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The Problem

Why do we care?

® As we look into long term space travel we can’t sustain
the current magnitude of waste output

® Routinely discarded waste may in fact be a reusable
source

® Potential Solutions:

* Mandated limits on consumption and consumed materials
® [imited standards of living
® Reduced product efficiency

e (Get creative

* Maximize the efficiency of waste management through the recycling
and repurposing of materials

® Encourages innovation and competition
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Biomaterials in Tissue Engineering

®* Biomaterials in tissue engineering have a variety of
applications from bone to muscle to skin

® Biodegradable meshes for hernia and cardiac repair
® Bijodegradable scaffolds for bone growth and repair
® Biodegradable synthetic skin analogues for burn injuries

® |t is crucial to characterize the appropriate mechanical
parameters of these meshes, to support regeneration without
impeding native tissue function

® |n cardiac applications, for example, a prolonged degradation
period and high mechanical strength could restrict
ventricular filling
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Objectives

® Develop and characterize a variety of methods to
repurpose and customize the mechanical
properties of pre-manufactured polymer meshes
for multi-purpose use on Earth and in space

® QOur work is designed to elucidate these material
characteristics of meshes to aid in handling,
engraftment, and biodegradation
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Methods

® Two polymeric meshes were explored:

1. Polycarbonate and polylactide co-polymer
2. Polyglactin 910

® Three methods of degradation:
1. Hydrolytic degradation (pH 7.4, 37°C)
2. Ethylene oxide chemical degradation
3. Ultraviolet photolytic degradation (254nm, 15mW)

® Tensile testing

* To extract the stiffness and maximum tensile strength
over the course of degradation /

ARIZONA




Hydrolytic Degradation

® Simulates in-vitro degradation
e pH 7.4, 37°C

® Seven day degradation intervals

Photolytic Degradation

e Ultraviolet light degradation
® 254 nm, 15 mW

® 12 hour exposure periods |
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Chemical Degradation

® Ethylene oxide sterilization
® 12 hour exposures

® Three stages:
® Pre-conditioning

® Temperature and humidity controlled to stimulate
microorganism growth

e Sterilizer
e EtO gas injection
® De-gasser
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Tensile Testing

® Young's Modulus (Elastic Modulus)

® Describes the tendency of an object to deform along an
axis when opposing forces are applied along that axis

® Stress(F/A) / Strain(mm/mm)
® The more elastic a material, the lower its elastic modulus

® Stiffness

® Describes the rigidity of an object, the extent to which it
resists deformation to an applied force

® Force(N) / Displacement(mm)

® Maximum Tensile Strength

® The maximum force(N) a material can withstand while
being stretched before breaking
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Tensile Testing

Force vs Displacement Stress vs Strain
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Tensile Testin:
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Polycarbonate Co-polymer
Stiffness Constant Data
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Polycarbonate Co-polymer
Maximum Tensile Strength Data
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Polyglactin910 Co-polymer

Stiffness Constant Data
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Polyglactin910 Co-polymer
Maximum Tensile Strength Data
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Conclusions

e UV degradation is most effective
e EtO degradation is least effective

Future Works:

® Analyze the effects of combined degradation methods

e Ex: UV and Hydrolytic Degradation of implanted
biomaterials in space

e Establish a model of polymer degradation to extrapolate
potential material properties given a material and
environment
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The Big Picture

What does this mean for polymers in space?

EtO degradation and hydrolytic degradation are feasible in space but
must be conducted in controlled environments such as metal
encasings to limit simultaneous UV degradation

e Aluminum can absorb approximately half the radiation it is exposed to

Light in the range of 200-300 nm is strongly absorbed in the
stratosphere by ozone

Transmission of radiation of wavelengths below 290 nm is negligible
below 10 km

Effects of photol?/tic degradation will play an important role in long
term space trave

® Negative: difficult to maintain material stability/integrity ARIZONA

® Positive: for re-purposable materials this means that no extra effort
needs to be put into degradation /
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